Во Вселенной может быть больше способов выковывать тяжелые элементы, чем мы думали.
Создание металлов, таких как золото, серебро, торий и уран, требует энергетических условий, таких как взрыв сверхновой или столкновение нейтронных звезд.
Однако новая статья показывает, что эти элементы могут образовываться в закрученном хаосе, который окружает активную новорожденную черную дыру, когда она поглощает пыль и газ из пространства вокруг себя.
В этих экстремальных условиях высокая скорость испускания нейтрино должна способствовать превращению протонов в нейтроны, что приводит к избытку последних, необходимому для процесса, производящего тяжелые элементы.
“В нашем исследовании мы впервые систематически исследовали скорость преобразования нейтронов и протонов для большого числа конфигураций дисков с помощью сложных компьютерных симуляций, и мы обнаружили, что диски очень богаты нейтронами при соблюдении определенных условий“, - сказал астрофизик Оливер Джаст из Центра исследований тяжелых ионов GSI им. Гельмгольца в Германии.
Вначале, после Большого взрыва, вокруг не было много элементов. Пока звезды не родились и не начали сталкивать атомные ядра в своих ядрах, Вселенная была супом, состоящим в основном из водорода и гелия. Звездный ядерный синтез наполнил космос более тяжелыми элементами, от углерода до железа для самых массивных звезд, просеянных через космос, когда звезда умирает.
Но железо - это то место, где ядерное синтезирование встречается с трудностями. Тепло и энергия, необходимые для производства железа путем синтеза, превышают энергию, генерируемую процессом, что приводит к падению температуры ядра, что, в свою очередь, приводит к гибели звезды в захватывающем взрыве - сверхновой.
Это тот впечатляющий взрыв (и взрыв сталкивающихся нейтронных звезд), в котором сплавлены более тяжелые элементы. Взрывы настолько сильны, что атомы, сталкиваясь с силой, могут захватывать нейтроны друг от друга.
Это называется процессом быстрого захвата нейтронов или r-процессом; это должно произойти очень быстро, чтобы радиоактивный распад не успел произойти до того, как к ядру добавятся новые нейтроны.
Неясно, существуют ли другие сценарии, в которых может иметь место r-процесс, но новорожденные черные дыры являются многообещающим кандидатом. А именно, когда две нейтронные звезды сливаются, и их совокупная масса достаточна, чтобы склонить вновь образованный объект в категорию черных дыр.
Коллапсары - еще одна возможность: гравитационный коллапс ядра массивной звезды в черную дыру звездной массы.
В обоих случаях считается, что детская черная дыра окружена плотным горячим кольцом материала, кружащимся вокруг черной дыры и питающимся ею, как вода в канализацию. В этих средах нейтрино испускаются в изобилии, и астрономы давно выдвинули гипотезу, что в результате может иметь место нуклеосинтез r-захвата.
Джаст и его коллеги провели обширное моделирование, чтобы определить, так ли это на самом деле. Они варьировали массу и спин черной дыры, массу материала вокруг нее, а также влияние различных параметров на нейтрино. Они обнаружили, что при подходящих условиях нуклеосинтез r-процесса может происходить в этих средах.
“Решающим фактором является общая масса диска“, - сказал Джаст.
“Чем массивнее диск, тем чаще нейтроны образуются из протонов в результате захвата электронов при испускании нейтрино и доступны для синтеза тяжелых элементов с помощью r-процесса. Однако, если масса диска слишком велика, обратная реакция играет повышенную роль, так что больше нейтрино повторно захватывается нейтронами, прежде чем они покинут диск. Эти нейтроны затем превращаются обратно в протоны, что препятствует r-процессу“
Эта золотая середина, в которой тяжелые элементы производятся наиболее активно, представляет собой диск с массой от 1 до 10 процентов массы Солнца. Это означает, что слияния нейтронных звезд с массами дисков в этом диапазоне могут быть фабриками тяжелых элементов. Исследователи заявили, что поскольку неизвестно, насколько распространены коллапсарные диски, решение о коллапсарах еще не принято.
Следующим шагом будет определение того, как свет, излучаемый при столкновении нейтронной звезды, можно использовать для расчета массы ее аккреционного диска. “Этих данных в настоящее время недостаточно. Но с помощью следующего поколения ускорителей, таких как Центр исследования антипротонов и ионов (FAIR), в будущем можно будет измерять их с беспрецедентной точностью“, - сказал астрофизик Андреас Баусвайн из GSI - Центра исследования тяжелых ионов им. Гельмгольца.
“Хорошо скоординированное взаимодействие теоретических моделей, экспериментов и астрономических наблюдений позволит нам, исследователям, в ближайшие годы проверить слияние нейтронных звезд как источник элементов r-процесса“.